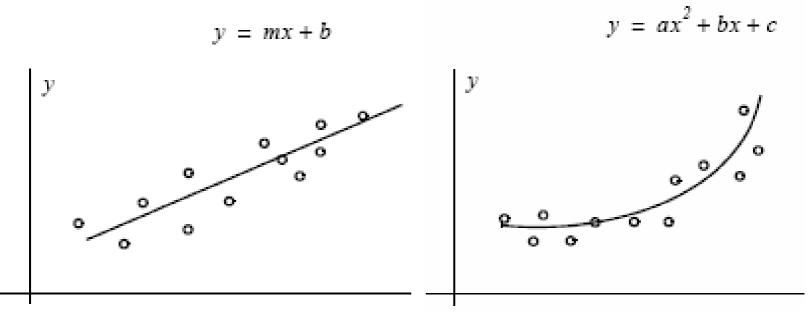
Regression

Ching-Han Chen I-Shou University 2006-04-25

Curve Fitting

Curve fitting is the process of finding equations to approximate straight lines and curves that best fit given sets of data.



Least-squares Regression Curve

Let the distance of data point x1 from the line be denoted as d1, the distance of data point x2, from the same line as d2, , and so on. The best fitting straight line or curve has the property that

$$d_1^2 + d_2^2 + \dots + d_3^2 = minimum$$

and it is referred to as the least-squares curve.

Linear Regression

In order to best fit the observed data, we compute the coefficients *m*(slope) and b(y-intercept) of the straight line equation

$$y = mx + b$$

such that the sum of the squares of the errors will be minimum. We denote the straight line equations passing through these points as $y_1 = mx_1 + b$ $y_2 = mx_2 + b$

$$y_2 = mx_2 + b$$

 $y_3 = mx_3 + b$

$$y_n = mx_n + b$$

Minimize the squares errors

Sum of the squares errors:

$$\sum squares = [y_1 - (mx_1 + b)]^2 + [y_2 - (mx_2 + b)]^2 + ...$$

Minimize the squares errors: $+ [y_n - (mx_n + b)]^2$

$$\frac{\partial}{\partial m} \sum squares = -2x_1[y_1 - (mx_1 + b)] - 2x_2[y_2 - (mx_2 + b)] - \dots -2x_n[y_n - (mx_n + b)] = 0$$

$$\frac{\partial}{\partial b} \sum squares = -2[y_1 - (mx_1 + b)] - 2[y_2 - (mx_2 + b)] - \dots$$
$$-2[y_n - (mx_n + b)] = 0$$

Regression Equation

$$(\Sigma x^{2})m + (\Sigma x)b = \Sigma xy$$
$$(\Sigma x)m + nb = \Sigma y$$

 $\Sigma x = sum \ of \ the \ numbers \ x$

 $\Sigma y = sum \ of \ the \ numbers \ y$

 $\Sigma xy = sum \ of \ the \ numbers \ of \ the \ product \ xy$

 Σx^2 = sum of the numbers x squared

n = number of data x

Solve the Regression Equation

$$\begin{aligned} (\Sigma x^2)m + (\Sigma x)b &= \Sigma xy \\ (\Sigma x)m + nb &= \Sigma y \end{aligned}$$

$$y = mx + b$$

$$b = \frac{nS_{XY} - S_X S_Y}{nS_{XX} - S_X S_X}.$$
$$m = \frac{S_Y - bS_X}{n}.$$

Algorithm

```
void regression(float x[], float y[], int nb,
  float &m, float &b)
  float xy=0, sx=0, sy=0, x2=0;
  int i;
  for(i=0;i<nb;i++)</pre>
  {
      xy=xy+x[i]*y[i];
      sx=sx+x[i];
      sy=sy+y[i];
      x2=x2+x[i]*x[i];
  }
  b=(nb*xy-sx*sy)/(nb*x2-sx*sx);
  m=(sy - b*sx)/nb;
```

Ex1.

While temperature increments, the observed resistance values are shown in

$T(^{\circ}C)$	x	0	10	20	30	40	50	60	70	80	90	100
$R(\Omega)$	у	27.6	31.0	34.0	37	40	42.6	45.5	48.3	51.1	54	56.7

Compute the straight line equation that best fits the observed data.

Ans:
$$y = mx + b = 0.288x + 28.123$$

Using Cramer's Rule

$$(\Sigma x^{2})m + (\Sigma x)b = \Sigma xy$$
$$(\Sigma x)m + nb = \Sigma y$$

With Cramer's rule, *m* and *b* are computed from

$$m = \frac{D_1}{\Delta} \qquad b = \frac{D_2}{\Delta}$$

$$\Delta = \begin{vmatrix} \Sigma x^2 \Sigma x \\ \Sigma x & n \end{vmatrix} \qquad D_1 = \begin{vmatrix} \Sigma x y \Sigma x \\ \Sigma y & n \end{vmatrix} \qquad D_2 = \begin{vmatrix} \Sigma x^2 \Sigma x y \\ \Sigma x & \Sigma y \end{vmatrix}$$

Polynomial Regression

$$y = ax^2 + b + c$$

Find the *least-squares polynomial with* coefficients *a*, *b* and *c*

$$(\Sigma x^{2})a + (\Sigma x)b + nc = \Sigma y$$
$$(\Sigma x^{3})a + (\Sigma x^{2})b + (\Sigma x)c = \Sigma xy$$
$$(\Sigma x^{4})a + (\Sigma x^{3})b + (\Sigma x^{2})c = \Sigma x^{2}y$$

$$(\Sigma x^{2})a + (\Sigma x)b + nc = \Sigma y$$
$$(\Sigma x^{3})a + (\Sigma x^{2})b + (\Sigma x)c = \Sigma xy$$
$$(\Sigma x^{4})a + (\Sigma x^{3})b + (\Sigma x^{2})c = \Sigma x^{2}y$$

```
for(i=0;i<nb;i++)</pre>
{
       u[0][0] += x[i]*x[i];
       u[0][1] += x[i];
       u[1][0] += pow(x[i],3);
       u[2][0] += pow(x[i],4);
       v[0] += y[i];
       v[1] += x[i]*y[i];
       v[2] += x[i]*x[i]*y[i];
}
u[0][2]=nb;
u[1][1]=u[0][0];
u[1][2]=u[0][1];
u[2][1]=u[1][0];
u[2][2]=u[1][1];
```

Ex.2

Find the *least-squares polynomial with* observed data :

x	1.2	1.5	1.8	2.6	3.1	4.3	4.9	5.3
у	4.5	5.1	5.8	6.7	7.0	7.3	7.6	7.4
x	5.7	6.4	7.1	7.6	8.6	9.2	9.8	
У	7.2	6.9	6.6	5.1	4.5	3.4	2.7	

530.15a + 79.1b + 15c = 87.8

4004.50a + 530.15b + 79.1c = 437.72

32331.49a + 4004.50b + 530.15c = 2698.37

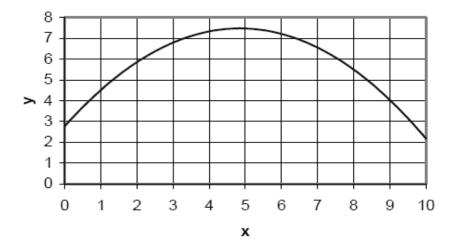
Solution for Ex.2

530.15a + 79.1b + 15c = 87.84004.50a + 530.15b + 79.1c = 437.72

32331.49a + 4004.50b + 530.15c = 2698.37

$$y = -0.20x^2 + 1.94x + 2.78$$

The least-squares polynomial is obtained : $y = -0.20x^2 + 1.94x + 2.78$



In a non-linear resistance device, experiments yielded the observed data:

millivolts	100	120	140	160	180	200
milliamps	0.45	0.55	0.60	0.70	0.80	0.85

Use respectively the linear and polynomial regression to compute the straight line and polynomial equation that best fits the given data.